El aparcamiento perfecto con fundamento matemático

El aparcamiento perfecto con fundamento matemático
62 comentarios
HOY SE HABLA DE

Situaciones de estas se ven todos los días. Se puede meter un coche por tus santísimos carburadores en un hueco en el que no cabe, a base de “contacto” y confiando en tu aseguradora luego se crea que te han arañado, no que tú has arañado. En cualquier caso existe un método para hacer aparcamientos EXACTOS.

¿Cómo? Utilizando una metodología matemática infalible. Un matemático de la Universidad de Londres, Simon Blackburn, ha publicado un trabajo en el que expone la fórmula del aparcamiento perfecto en paralelo, utilizando trigonometría elemental, raíces cuadradas y aritmética sencilla.

Para clavar tu coche en un hueco necesitas saber unos datos elementales del mismo, todos expresados en milímetros, para saber el espacio mínimo que necesitas para aparcar. Los asistentes de aparcamiento automático se basan en este principio para saber si el coche cabe o no cabe y poder aparcarlo automáticamente.

Aparcamiento perfecto
Fíjate bien. Necesitas saber el ancho, voladizo delantero (distancia del eje delantero al extremo del paragolpes), radio de giro entre aceras (el diámetro divivido por dos), batalla y longitud. Con mayor o menor dificultad esos datos pueden obtenerse del fabricante o medirlos manualmente.

Veamos un ejemplo, Fiat Dobló, versión de pasajeros. Mide 4.390 mm de largo y 1.832 mm de ancho. La distancia entre ejes, la batalla, es de 2.755 mm. Si el diámetro de giro entre aceras es 11,2 m, dividimos por dos y convertimos a milímetros, salen 5.600 mm de radio de giro. El voladizo delantero mide 895 mm.

Necesitaremos 6.015 mm para aparcar como poco, o lo que es lo mismo, 6 metros y 15 mm. El día que los coches puedan levantarse unos palmos del suelo y moverse lateralmente esto no hará falta, pero es complicado implementar eso por el espacio y peso que supone.

Si cuentas con esa distancia es posible aparcar perfectamente sin rozar un solo paragolpes propio o ajeno.

Aparcamiento perfecto

Ésta es la fórmula que permite calcular la distancia, todas las unidades deben estar en la misma medida, y milímetros es la más cómoda. Entiendo que las habidades matemáticas medias del personal (como las de un servidor) no permiten hacer ese cálculo rápidamente sin equivocarse, así que he adjuntado una calculadora:

Rellena los datos en las casillas verdes y obtendrás la respuesta. La he revisado y espero no haberme equivocado en ningún término, si es así, me lo decís y la corrijo.

Por último, un pequeño recordatorio sobre teoría de aparcamiento. Como veis, hay que inscribir el coche en estas circunferencias imaginarias para “clavarlo”. Obviamente también ayuda que los que están aparcados en paralelo no se hayan dado un paseíto hasta la acera.

Lamentablemente las matemáticas no solucionan todo.

Aparcamiento perfecto

Dibujos originales | Alyson Hurt (NPR)
Vía | NPR
Fuente | The Geometry of Perfect Parking, Simon Blackburn (London University)
En Motorpasión | El aparcamiento perfecto

Temas
Comentarios cerrados